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ABSTRACT

Over a half-billion smartphones are now capable of measuring atmospheric pressure, potentially providing a

global surface observing network of unprecedented density and coverage. An earlier study by the authors de-

scribed anAndroid app, uWx, that served as a test bed for advanced quality control andbias correction strategies.

To evaluate the utility and quality of the resulting smartphone pressure observations, ensemble data assimilation

experiments were performed for two case studies over the Pacific Northwest. In both case studies, smartphone

pressures improved the analyses and forecasts of assimilated and nonassimilated variables. In case I, which

considered the passage of a front across the region, cycled smartphone pressure assimilation consistently im-

proved 1-h forecasts of the altimeter setting, 2-m temperature, and 2-m dewpoint. During a postfrontal period,

cycled smartphone pressure assimilation improved mesoscale forecasts of hourly precipitation accumulation. In

case II, which considered a major coastal windstorm, cycling experiments assimilating smartphone pressures

improved 10-m wind forecasts as well as the predicted track and intensity. For both cases, free-forecast exper-

iments initializedwith smartphone data produced forecast improvements extending several hours, suggesting the

utility of crowdsourced smartphone pressures for short-term numerical weather prediction.

1. Introduction

Surface pressure observations can provide informa-

tion on all scales of motion, ranging from convectively

produced cold pools to midlatitude cyclones. Surface

pressure is a particularly valuable surface parameter,

since it reflects atmospheric structure through the full

depth of the atmosphere and is less influenced by ex-

posure and representation errors than surface temper-

ature, moisture, and wind. These characteristics have

motivated interest in evaluating the potential of surface

pressure observations for improving data assimilation

and numerical weather prediction.

On the synoptic scale, experiments assimilating only

surface pressure observations have reproduced upper-

tropospheric large-scale circulations (Compo et al. 2006)

and generated realistic lower- and middle-tropospheric

analyses (Whitaker et al. 2004; Dirren et al. 2007). Con-

sidering mesoscale simulations, Wheatley and Stensrud

(2010) noted that the hourly assimilation of altimeter set-

ting, and, to a limited degree, altimeter tendency reduced

errors in mesohigh position and intensity, resulting in im-

provedmodel depiction of cold pools.Madaus et al. (2014)

assimilated 3-hourly altimeter and altimeter tendency ob-

servations from a high-density network of routine airport

observations (METARs) and bias-corrected mesonet ob-

servations. A monotonic decrease in domain-averaged

analysis error occurred as the number of assimilated

pressure observations increased.

Since surface pressure alone can constrain model

initializations at the surface and aloft, and model ini-

tializations are improved as observational density and

frequency increases (Anderson et al. 2005; Lei and

Anderson 2014; Madaus et al. 2014), large numbers of

pressure observations from smartphones possess the

potential for improving numerical weather prediction.

Surface pressure observations from smartphones offer

unparalleled density and can be collected at high tem-

poral frequency (McNicholas and Mass 2018). Hanson

(2016), using observation system simulation experi-

ments with synthetic smartphone pressures, concluded

that if observational uncertainty could be estimated,

smartphones pressures could improve model forecasts.

The development of several crowdsourcing pressure

applications, such as PressureNet and WeatherSignal,

facilitated the initial evaluation of smartphone pressures

for analysis and numerical weather prediction. Mass and

Madaus (2014) described the potential of crowdsourcingCorresponding author: Callie            McNicholas, cmcnich@uw.edu
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smartphone pressures for mesoscale numerical weather

prediction (NWP) and provided an example of smart-

phone pressure assimilation for a convective event in

eastern Washington State. Madaus and Mass (2017)

found that assimilating hourly smartphone pressures

resulted in limited improvements to altimeter setting

forecasts and a small reduction in forecast skill for other

surface variables, such as 2-m temperature and 2-m

humidity. The limited positive impact of smartphone

pressure observations appeared to result from poor data

quality. Madaus and Mass (2017) did not account for

sensor bias and elevation uncertainty, undermining their

ability to constrain model forecasts.

The results of Madaus and Mass (2017) motivated a

follow-up study (McNicholas and Mass 2018, hereafter

MM2018) in which smartphone pressure observations

(SPOs) were collected from an Android app (uWx;

www.cmetwx.com) that allowed the evaluation of pres-

sure collection and quality control strategies. In uWx,

sources of error were reduced, and observational un-

certainty was quantified. A machine learning approach

predicted and corrected smartphone pressure biases in

real time, resulting in marked improvements in the

quality of SPOs.

In this study, we evaluate the impacts of the quality

control and bias-correction strategies of MM2018 on

numerical weather prediction by performing ensemble

data assimilation of SPOs, with and without bias cor-

rection/quality control, for two case studies. In the first

case, an intensifying surface low and trailing cold front

traversed the uWx SPO network. The second case study

simulated a strong, compact midlatitude cyclone that

formed from the remnants of Tropical Storm Songda. In

this case, operational systems misplaced the location of

landfall, resulting in poor surface wind forecasts.

The remainder of this paper is organized as follows. In

section 2, the two events are reviewed. Section 3 describes

the design and methodology of the data assimilation/

forecasting experiments for both cases. The results of

the experiments are examined in sections 4 and 5, re-

spectively. Section 6 discusses the conclusions and im-

plications of this study.

2. Case descriptions

The two cases selected for this study reflect two im-

portant types of events in the Pacific Northwest: 1) a

typical surface low and frontal passage with postfrontal

precipitation and 2) a major coastal windstorm.

a. Case I

This case represents a familiar scenario for opera-

tional forecasts in the Pacific Northwest: a surface low

and cold frontal passage. Figure 1 provides a synoptic

overview of this case. At 1200UTC 15November 2016, a

surface low was positioned over western Washington,

with a weak pressure trough and associated cold front to

the south. Aloft (500 hPa), southwesterly flow domi-

nated the region, with a jet streak extending off the

Pacific Ocean into northern Oregon. The 15-h forecast

from the operational High Resolution Rapid Refresh

(HRRR; Blaylock et al. 2017) overestimated the east–

west pressure gradient in western Washington, with

positive errors (;2hPa) along the Oregon and south-

west Washington coasts and excessively low pressure

over the Cascades, eastern Washington, and west of

Vancouver Island. The surface temperature errors had

less structure, with the low and trough generally being

modestly cooler than observed.

b. Case II

In case II, a coastal cyclone developed from the

remnants of Tropical Storm Songda (Fig. 2). At

0300 UTC 16 October 2016, a deep surface low was

centered over Vancouver Island beneath a negatively

tilted 500-hPa trough. The tight pressure gradient

around the low produced strong near-surface winds

(.25–30 kt, where 1 kt ’ 0.51m s21) over the waters

surrounding Vancouver Island. Over the Puget Sound

region, the observed near-surface wind speeds were

relatively modest (10–15 kt); however, short-range

forecasts from multiple operational systems such as

the NOAA/NWSGlobal Forecasting System (GFS), the

University of Washington’s WRF Model (UW-WRF),

and the NOAA/NWS HRRR moved the surface

low over the Olympic Peninsula, bringing gale-force

wind gusts to the westernWashington interior. The 15-h

HRRR forecasts misplaced the location of landfall,

bringing the surface low approximately 100 km too far

east, with large pressure errors (too low) over southern

Vancouver Island. Consequently, there were significant

near-surface wind forecast errors, most notably in

northwest Washington and the eastern Strait of Juan De

Fuca, where the predicted winds were too strong. The

potential for SPOs to constrain pressure forecasts, es-

pecially errors in the intensity and track of the surface

low, motivated this case.

3. Methodology

a. Model setup

For all ensemble data assimilation (DA) experiments,

simulations were performed with the WRF Model

(Skamarock et al. 2008). WRF was run with 38 vertical

levels, a horizontal grid spacing of 4 km, and a domain
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encompassing most of the Pacific Northwest. The model

domain was centered at (468N, 1228W) and had di-

mensions of 1200km 3 900km. Physics parameteriza-

tions (Table 1) reflect those used in the operational

National Centers for Environmental Prediction (NCEP)

HRRRmodel (Benjamin et al. 2016). A total of 48WRF

ensemble members were produced using the stochastic

kinetic-energy backscatter scheme (SKEBS) to perturb

WRF initial and boundary conditions (Berner et al.

2011). SKEBS parameter values are listed in Table 2.

Initial conditions at the beginning of a 12-h spinup

period were provided by the NOAA/ESRL Rapid

Refresh model analysis (RAP; Benjamin et al. 2016),

with hourly boundary conditions generated with RAP

1-h forecasts to emulate a real-time cycled DA system

in which RAP forecasts are available approximately

1 h after nominal time.

b. Data assimilation

Assimilation experiments were conducted on the

Microsoft Azure Cloud using the Data Assimilation

Research Testbed (DART; Anderson et al. 2009) en-

semble square root adjustment filter. Table 3 lists WRF

state variables updated by DART during assimilation

experiments. Spatially and temporally varying adaptive

covariance inflation was employed to promote and

maintain ensemble spread (Anderson et al. 2009). Sam-

pling error correction was applied to help maintain en-

semble spread and constrain sampling errors associated

with limited ensemble size (Anderson 2012). Gaspari–

Cohn localization was used in the horizontal, with a half-

width of 500km (Gaspari and Cohn 2006). Adaptive

localization applied a threshold of 500 observations to

decrease the localization cutoff in regions of dense ob-

servations (Anderson and Collins 2007). For this study,

this procedure effectively reduced the localization radius

for SPOs to approximately 330km. The DART system

includes quality control (QC) checks on observations to

improve assimilation quality. Specifically, when the dif-

ference between an observation and the ensemble-mean

estimate of that observation exceeded 3 times the en-

semble spread, the observation is rejected as an outlier.

Surface observations whose elevation deviated from the

model elevation bymore than 200mwere not assimilated.

c. Experimental design

In each case study, a control (CNTRL) ensemble was

generated using the approach outlined in Fig. 3a. For the

FIG. 1. HRRR analysis and 15-h forecast errors at 1200 UTC 15 Nov 2016. (top left) MSLP, 2-m temperature,

and 10-m wind analysis. (top right) The 500-hPa heights and wind analysis. (bottom left) The 15-h HRRR forecast

error for MSLP. (bottom right) The 15-h forecast error for 2-m temperature.
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control simulations, the 48-memberWRF ensemble was

advanced hourly with SKEBS perturbed boundary

conditions from 1-h RAP forecasts but with no DA.

Conversely, in no-cycling DA experiments (Fig. 3b), the

1-h forecast (prior) from the CNTRL ensemble is up-

dated with observations using the DART ensemble

square root filter to create an analysis (a.k.a., the pos-

terior). Since the model is not advanced from updated

analyses, no-cycling DA experiments are designed to

examine the impact of pressure assimilation on model

analyses, given the same prior states. To examine the

impact of pressure assimilation on forecasts, cycled DA

is performed (Fig. 3c) wherein the model is advanced

from analyses (posteriors) produced by assimilating

surface pressure observations with DART.

For each case, DA experiments were performed

over a 60-h period. For case I, no-cyclingDAand cycling

DA experiments were performed with SPOs,METARs,

and mesonet surface pressure observations available

from the Meteorological Assimilation Data Ingest Sys-

tem (MADIS) between 1200 UTC 14 November and

0000 UTC 17 November 2016. In case II, cycling DA

experiments with SPOs were performed from 1200UTC

14 October to 0000 UTC 17 October 2016. All DA

experiments were verified with quality-controlledMETAR

observations.

In both cases, extended forecasts were initialized from

the CNTRL ensemble and SPO cycled ensembles to

evaluate the impact of SPO assimilation at lead times

beyond 1h. In case I, 6-h free forecasts were initialized

every 6 h beginning at 1200 UTC 14 November and

ending at 0000 UTC 17 November 2016. In case II,

5-h free forecasts were initialized at 2300 UTC

15 October 2016. In all free-forecast experiments, the

full 48-memberWRF ensemble was advancedwith SKEBS

perturbed boundary conditions from the RAP model.

FIG. 2. HRRR analysis and 15-h forecast error at 0300 UTC 16 Oct 2016. (top left) MSLP, 2-m temperature, and

10-m wind analysis. (top right) The 500-hPa heights and wind analysis. (bottom left) The 15-h forecast error for

MSLP. (bottom right) The 15-h forecast error for surface wind gusts.

TABLE 1. WRF physics parameterizations.

Physics Parameterization

Microphysics Thompson

Planetary boundary layer Mellor–Yamada–Nakanishi–Niino

(MYNN)

Cumulus None

Shortwave radiation RRTMG

Longwave radiation RRTMG

Land surface RUC land surface model

Surface layer MYNN
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4. Observation preprocessing

Both ‘‘corrected’’ and ‘‘uncorrected’’ SPOs are used

in this study. Corrected SPOs are bias corrected and

quality controlled using the approach outlined in

MM2018. Uncorrected SPOs are retrieved prior to bias

correction and quality control. Altimeter setting is used

in all experiments, with SPOs reduced to sea level using

the altimeter equation [Eq. (2)] in MM2018.

a. Observation bias correction

For both case studies, SPOs were corrected following

the methodology of MM2018. Specifically, a random

forest, machine-learning approach (Breiman 2001) was

used with uWx data to predict and correct smartphone

pressure bias. Random forests were generated using the

Python Scikit-learnmachine learning library (Pedregosa

et al. 2011). For the first case, random forests were

trained from 15August to 9November 2016. During and

prior to the second case study, uWx was advertised to

the public, resulting in a doubling of the number of

uWx users from approximately 1000 to 2000. Sincemany

SPOs collected during this case were retrieved from

smartphones that had just joined the uWx network,

bias correction of SPOs using past data was not possible.

As a result, SPOs used in the second case study were bias

corrected with random forests trained on data re-

trieved during the month after the event (19 October–

23 November 2016).

Quality control ofMETARandmesonet observations

is performed within MADIS (Miller et al. 2005). Only

METAR and mesonet observations that passed the first

three stages of MADIS quality control were used in the

DA experiments. Because DA was performed hourly,

observations were binned by hour. If several observa-

tions from a specific METAR or mesonet station fell

within 30min of the hour, only the observation valid

closest to the beginning of the hour was retained. This

effectively reduced the observation window to 15min

for mesonet observations and 7min for METAR ob-

servations. The same filtering was not performed for

SPOs since a single smartphone can provide multiple

observations, at unique locations, within a single

assimilation cycle.

b. Observation uncertainty

Typically, observation error variances in data assimi-

lation systems are set to a constant value for all altimeter

setting observations (Wheatley and Stensrud 2010;

Madaus et al. 2014; Madaus and Mass 2017). In this

study, the error variances for METAR and mesonet

altimeter setting observations were set to 1 and 1.5hPa2,

respectively. SPO error variance was calculated as the

square of the sum of SPO uncertainty, derived in

MM2018 and listed in Table 4. This approach was used

to calculate the error variance for both uncorrected and

corrected SPOs.

The distribution of corrected/uncorrected SPO error

variance for case I is displayed in Fig. 4. SPO error

variance is right skewed by smartphones with larger

bias correction/estimation uncertainty and at locations

where the local terrain variance is large. In Table 4, the

various contributions to error variance are different for

each smartphone. Since individual smartphones contribute

both uncorrected and corrected SPOs, the error variance

distribution of uncorrected and corrected SPOs is similar.

This suggests that uncorrected SPO error variance is un-

derestimated using the approach outlined above.

c. Spatial and temporal characteristics of SPOs

Figure 5a displays the locations of corrected SPOs

during the entire period of case I, as well as for a single

time: 1200 UTC 14 November 2016. The distribution of

mesonet and verification METAR observations is dis-

played in Fig. 5b. SPO density from the uWx app in the

Seattle, Washington, metropolitan area far exceeds that

TABLE 2. SKEBS parameter values.

SKEBS parameter Value

Total backscattered dissipation rate for

streamfunction

5.0 3 1025 m2 s23

Total backscattered dissipation rate for

potential temperature

1.0 3 1024 m2 s23

Decorrelation time for streamfunction

perturbations

3600 s

Decorrelation time for potential temperature

perturbations

3600 s

Spectral slope for streamfunction

perturbations

21.83

Spectral slope for potential temperature

perturbations

21.83

TABLE 3. WRF state variables updated by DART.

WRF state variable Description

U X-wind component

V Y-wind component

W Z-wind component

PH Perturbation geopotential

T Perturbation potential temperature

MU Perturbation dry air mass in column

QVAPOR Water vapor mixing ratio

QCLOUD Cloud water mixing ratio

QRAIN Rain water mixing ratio

U10 U at 10m

V10 V at 10m

T2 Temperature at 2m

Q2 QVAPOR at 2m

PSFC Surface pressure
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of existing networks (Fig. 5b), while in rural eastern

Washington the coverage is sparser.

The number of SPOs available during cases I and II is

displayed in Figs. 5c and 5d. The number of available

METAR and mesonet observations is also displayed

in Fig. 5c, as these observations were assimilated in

case I DA experiments. In contrast to mesonets and

METARs, there is a substantial diurnal variation in

SPO availability. Fewer SPOs are available overnight

when smartphone use is reduced and the smartphone

operating system is more likely to limit background

tasks such as pressure retrieval. During case I, a small

fraction of uncorrected SPOs fail DART’s standard

deviation checks, primarily during the day when more

smartphones are in motion or located in urban areas

where buildings are taller (Fig. 5b). During case II, the

number of available SPOs increased as uWx was ad-

vertised to the public in the lead up to the windstorm. In

case II, virtually all uncorrected SPOs passed DART’s

QC checks (Fig. 5c). This reflects the large uncertainty in

FIG. 3. Schematic illustrating the design and advance of (a) the CNTRL ensemble, (b) the no-cycling DA experiments, and (c) the

cycling DA experiments. In this schematic DA refers to data assimilation, the process by which information from observations is in-

corporated into model analyses/forecasts. The acronym BC refers to boundary conditions, in this study provided by the operational

RAP model.

TABLE 4. Sources of uncertainty for SPOs. Smartphone pressure error variance is calculated as the square of the sum of the sources of

uncertainty.

Source of uncertainty Description Type

Median

magnitude (hPa)

Measurement noise Standard deviation of 50 sample sensor time

series averaged for pressure retrieval

Unique for all smartphones and SPOs 0.02

Sensor accuracy Relative accuracy of a typical smartphone

pressure sensor (0.17 hPa)

Constant for all smartphones and all SPOs 0.17 (constant)

Elevation uncertainty Two standard deviations of the local

elevation grid at the SPO location

Unique for all smartphones and SPOs 0.34

Pressure bias uncertainty Uncertainty of the pressure bias estimate

upon which uWx random forests are

trained (unique for each smartphone)

Unique for each smartphone; constant

for all SPOs of a given smartphone

0.42

Bias prediction uncertainty RMSE of cross-validated random forest

bias prediction

Unique for each smartphone; constant

for all SPOs of a given smartphone

0.29
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the track and intensity of the windstorm in case II, which

increased the background ensemble spread, resulting in

more lenient DART QC.

5. Case I: Data assimilation and forecast results

a. No-cycling experiments

To evaluate the impact of assimilating SPOs on model

analyses, four no-cyclingDAexperiments were performed.

The METAR and MESONET experiments evaluated the

impact of assimilatingMETARs and themesonet altimeter

setting. The PHONE and PHONE_NOQC experiments

evaluated the performance of assimilating corrected and

uncorrected SPOs, respectively. In all four DA experi-

ments, analysis errors were computed by subtracting

METARobservations from the ensemblemean analysis at

the locations of all METARs in the model domain.

Figure 6a displays the domain-average altimeter bias

for all four DA experiments and the CNTRL. Assimi-

lating METAR, mesonet, and corrected SPOs nearly

eliminates the positive pressure bias apparent in the

CNTRL. Uncorrected SPOs, many of which were likely

retrieved above ground level, introduced a systematic

low pressure bias in no-cycling analyses. In the CNTRL,

the domain-average pressure bias was a result of 2–3-hPa

(positive) pressure biases throughout the Columbia River

basin, in the lee of the Cascade Mountains. The CNTRL

forecasts, in this region, were characterized by anoma-

lously low temperature and anomalously high pressure

throughout the case.

Domain-averaged RMSE was computed each hour

for several variables from the analysis error at allMETAR

locations in the model domain (see the appendix for de-

tails). Figure 6b displays the domain-averaged time series

of altimeter RMSE for the CNTRL and four no-cycling

DA experiments. Period-averaged differences in RMSE

between the CNTRL and the four experiments are

displayed in the right panel. Relative to the prior

(CNTRL), assimilating corrected SPOs consistently

reduced the altimeter analysis error at METAR lo-

cations by approximately 0.5 hPa (;50%). Assimi-

lating uncorrected SPOs proved nonbeneficial to

altimeter setting analyses as the time-averaged altimeter

RMSE in the PHONE_NOQC experiment was not

significantly different from CNTRL. The assimilation of

mesonet altimeter setting resulted in a median altimeter

RMSE reduction of 0.6 hPa. The largest reduction in

altimeter RMSE was achieved when METAR altimeter

setting observations were assimilated. This result is

expected as the assimilated observations were not in-

dependent of the verification.

FIG. 4. Corrected and uncorrected smartphone altimeter error variances during case I

(1200 UTC 14 Nov–0000 UTC 17 Nov 2016). Note that the right tail of the distribution extends

beyond 6 hPa. The histogram is cut off at this value since approximately 99.5% of SPO error

variances are less than 6 hPa2.
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Figures 6c–e display time series of 2-m temperature,

2-m dewpoint, and 10-m wind speed analysis error, rel-

ative to the prior (CNTRL) error. In both the PHONE

and PHONE_NOQC experiments, SPOs generally

provided no added benefit to the CNTRL analyses of

10-m wind speed, while a slight period-average im-

provement in 10-m wind analyses was observed when

mesonet/METAR altimeter setting observations were

assimilated. Assimilating corrected SPOs reduced the

dewpoint and temperature analysis errors approxi-

mately 0.1 and 0.18K, respectively. RMSE improve-

ments from assimilating the mesonet altimeter setting

were comparable to those achieved by assimilating cor-

rected SPOs. There were improvements to temperature

and dewpoint analyses when uncorrected SPOs were

assimilated, and, assimilating uncorrected SPOs reduced

temperature analysis errors to a greater degree than as-

similating corrected SPOs.

In the CNTRL, the domain-average temperature bias

was negative due to persistent 2–3-K (negative) tem-

perature biases in the Columbia River basin, east of the

Cascade Mountains (not shown). SPO assimilation in

the PHONE experiment, and, to a greater degree, in the

PHONE_NOQC experiment produced negative pressure

increments. In the CNTRL, ensemble correlations be-

tween pressure and temperature were mostly negative.

Consequently, negative pressure increments were asso-

ciated with positive increments to the temperature field.

Analysis increments in the PHONE_NOQCexperiment

were larger than in the PHONE experiment, as uncor-

rected SPOs deviated more from the CNTRL analysis

and were more numerous/widespread than corrected

SPOs. Accordingly, positive temperature increments in

the PHONE_NOQC experiment helped offset negative

temperature biases inCNTRL, to a greater degree than in

the PHONE experiment. As a result, the 2-m tempera-

ture analysis RMSE was smaller in the PHONE_NOQC

experiment than in the PHONE experiment.

b. Correlation length scale

Altimeter assimilation produced RMSE improve-

ments of different magnitudes for each observed surface

variable (Fig. 6). It was initially hypothesized that as-

similating pressure should improve wind analyses, since

pressure and wind are intimately related; however, this

was not the case in the no-cycling DA experiments. To

explain this lack of improvement in the wind statistics,

the magnitude of the correlation coefficients between

FIG. 5. (a) SPO locations during case I (1200 UTC 14 Nov–0000 UTC 17 Nov 2016) and during a single assimilation cycle (1200 UTC 14

Nov 2016). (b) MADIS mesonet and METAR altimeter observation locations. Inset plots depict observation locations in and around

Seattle. The numbers of pressure observations retrieved (nobs) and assimilated (nassim), each hour, by observation type, in no-cyclingDA

experiments during (c) case I and (d) case II. Time series are displayed for both uncorrected (PHONE_NOQC) and corrected (PHONE)

smartphone pressure observations.
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FIG. 6. (a) Altimeter setting bias and (b) RMSE of altimeter setting, (c) 2-m temperature, (d) 2-m dewpoint,

and (e) 10-m wind speed in the no-cycling experiments. (left) Time series of RMSE/bias for the CNTRL

(black), PHONE (blue), PHONE_NOQC (pink), MESONET (orange), and METAR (green) experiments.

(right) Boxplots display the distribution of RMSEdifferences between the CNTRL1-h forecast (prior) RMSE

and the analysis (posterior) RMSE for each experiment. Notches in the boxplots represent the confidence

interval (95%) for the median.
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surface pressure and itself, 2-m temperature, 2-m spe-

cific humidity, and the zonal component of the 10-m

wind was computed as a function of distance for each

grid point in the CNTRL ensemble (Fig. 7). Figure 7

reveals that surface pressure is correlated with itself at

distances of up to 320 km. This distance, defined as the

correlation length scale for pressure, is in good agree-

ment with the effective localization radius for SPOs

noted in section 2. The second and third most closely

correlated variables with surface pressure were 2-m

temperature and 2-m specific humidity, respectively.

The smaller the correlation magnitude, the smaller the

covariance, and the smaller the analysis increments.

Analysis error reductions were greater for 2-m tem-

perature than 2-m dewpoint due to temperature’s longer

correlation length scale and larger correlation with

surface pressure. Little to no improvement was observed

for 10-m wind analyses in the no-cycling DA experi-

ments since correlations between ensemble estimates of

pressure and wind were minimal.

c. Sensitivity experiments

In previous research, a connection was found between

the surface pressure observation density and analysis

error (Anderson et al. 2005; Lei and Anderson 2014;

Madaus et al. 2014). This relationship is tested here for

corrected/uncorrected SPOs by assimilating varying

sample sizes of SPOs over the duration of case I. At each

assimilation step, specified numbers of SPOs were se-

lected by random sampling without replacement, which

FIG. 7. Correlation coefficient magnitude of surface pressure (PS) with itself, 2-m temperature T, 2-m specific

humidity Q, and the zonal 10-m wind U as a function of distance. These plots were generated from the CNTRL

ensemble. Ensemble estimates of surface pressure at a single grid pointXwere correlated with ensemble estimates

of each surface variable, at all grid points. Time averages were taken of the correlation coefficient magnitude at

each grid point and the correlation coefficients were binned as a function of distance from grid pointX. This process

was repeated for all grid points, providing a distribution of cross-correlation magnitude, as a function of distance.

The above plots display the interquartile range (IQR; shaded) and median (bold line) of this distribution. Dashed

lines indicate the decorrelation magnitude, defined as the correlation coefficient magnitude below which corre-

lations are, on average, not statistically significant. The distance at which correlations between PS and each surface

variable are no longer significant is defined as the correlation length scale (decorrelation distance).
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ensured that SPOs from the same smartphone were not

necessarily assimilated every hour.

Figure 8 displays the results of this sensitivity experi-

ment. Assimilating corrected SPOs resulted in a

monotonic decrease of the analysis altimeter, 2-m tem-

perature, and 2-m dewpoint RMSEs relative to the prior

(CNTRL) as the number of corrected SPOs assimilated

was increased. A similar reduction in 2-m temperature

and 2-m dewpoint RMSE was observed when the num-

ber of uncorrected SPOs assimilated was increased.

Decreases in analysis RMSE of each variable in the

PHONE experiment were consistent with the correla-

tion length scale between the variable and surface

pressure (Fig. 7). Surface variables more correlated with

surface pressure and with longer correlation length

scales exhibited larger reductions in analysis RMSE.

In the PHONE experiment the largest reductions were

observed for altimeter setting, followed by 2-m tem-

perature and 2-m dewpoint. In both the PHONE and

PHONE_NOQC experiments, wind analysis RMSE was

independent of the number of observations assimilated

since the sample covariance between the wind and pres-

sure was, on average, minimal.

d. Cycling experiments

To evaluate the cumulative impact of SPO assimi-

lation, four cycling DA experiments were performed

with corrected SPOs (PHONE), uncorrected SPOs

(PHONE_NOQC), mesonet altimeter observations

(MESONET), andMETAR altimeter observations. For

all cycling experiments, 1-h forecast errors were com-

puted by subtracting METAR observations from the

prior ensemble-mean 1-h forecast at the location of each

METAR observation. A domain-averaged 1-h forecast

RMSE was computed at each assimilation step for the

ensemble mean altimeter setting, 2-m temperature, 2-m

dewpoint, and 10-m wind speed.

Time series of the domain-averaged 1-h altimeter

forecast RMSE for each cycling experiment are displayed

in Fig. 9a, with period-averaged differences in RMSE be-

tween the CNTRL 1-h forecast and the four DA experi-

ments displayed in the right panel. Assimilating corrected

FIG. 8. Sensitivity of no-cycling experiments to the number of observations assimilated. The RMSEs of the

altimeter setting, 2-m temperature, 2-m dewpoint, and 10-m wind speed are displayed for the PHONE and

PHONE_NOQC experiments. These plots were generated by computing themean domain-averagedRMSE for all

60 assimilation cycles. Error bars represent bootstrapped 95% confidence intervals for the mean RMSE difference

between each experiment andCNTRL. In each sensitivity experiment SPOs of sample sizeNwere selected, prior to

each assimilation cycle, by randomly sampling without replacement.

OCTOBER 2018 MCN ICHOLAS AND MASS 1385

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 07:21 PM UTC



FIG. 9. RMSEs of (a) altimeter setting, (b) 2-m temperature, (c) 2-m dewpoint, and (d) 10-m wind speed in

the cycling experiments. (left) As in Fig. 6, time series of RMSEs for the CNTRL (black), PHONE (blue),

PHONE_NOQC (pink), MESONET (orange), and METAR (green) experiments. (right) Boxplots display the

distribution of RMSE differences between the 1-h forecast (prior) RMSEs and 1-h forecasts from each experiment.
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SPOs consistently reduced 1-h forecast altimeter RMSEs,

with a median RMSE reduction of 0.4hPa. This reduction

in RMSE was not significantly different than the re-

duction of 1-h forecast altimeter RMSEs observed in the

MESONET and METAR experiments. Assimilating

uncorrected SPOs provided no benefit to 1-h forecasts of

altimeter setting.

Figures 9b–d display the domain-averaged 1-h fore-

cast RMSEs for 2-m temperature, 2-m dewpoint, and

10-m wind, as well as the CNTRL ensemble-mean 1-h

forecast RMSE. Assimilating corrected SPOs consis-

tently improved the 1-h temperature forecasts and, to a

lesser degree, the 1-h dewpoint forecasts. This result is

expected since pressure is more strongly correlated with

2-m temperature than dewpoint. On average, corrected

SPOs slightly degraded the performance of 1-h wind

forecasts. When uncorrected SPOs were assimilated,

reductions in 2-m temperature were observed but were

not sustained. Large increases in 2-m temperature

RMSE were observed in the PHONE_NOQC experi-

ment toward the end of the period. In contrast to the

no-cycling experiments, the assimilation of uncorrected

SPOs degraded the 1-h forecasts of 2-m dewpoint and

10-m wind speed.

To examine the time-averaged spatial distribution of

the forecast error, the 1-h forecast RMSEwas computed

at each METAR verification site over case I, for all cy-

cling DA experiments and the CNTRL experiment. The

results are displayed in Fig. 10, which shows the 1-h

forecast RMSE difference between each assimilation

experiment and the CNTRL experiment, at all verifi-

cation sites, for surface variables altimeter setting, 2-m

temperature, 2-m dewpoint, and the 10-m zonal u-wind

component. Figure 10 reveals that reductions in the 1-h

forecast RMSE for altimeter setting were widespread

in all experiments except for the PHONE_NOQC

FIG. 10. Time-averaged spatial distribution of 1-h forecast RMSEs, relative to CNTRL, for the METAR, MESO, PHONE, and

PHONE_NOQC cycling experiments. RMSE differences for each cycling experiment are displayed in rows, with each column showing

the RMSE difference for a given surface variable. At each verification site, the 1-h forecast RMSE is computed for the altimeter setting,

2-m temperature, 2-m dewpoint, and 10-m uwind over the duration of case I. This calculation is performed for all DA experiments and the

CNTRL experiments.
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experiment, in which 1-h forecasts of altimeter setting

were degraded in westernWashington and southeastern

Oregon. Improvements to 1-h forecasts of 2-m temper-

ature were observed throughout the domain in all cy-

cling experiments; however, in the PHONE_NOQC

experiment the 2-m temperature forecasts were only

marginally improved in western Washington. In the

PHONE_NOQC experiment the 1-h forecast RMSE for

2-m dewpoint was increased, relative to the CNTRL,

over northwest Washington and Vancouver Island,

Canada. In this region the assimilation of uncorrected

SPOs produced large negative (positive) pressure

(temperature) increments resulting in anomalously

warm and dry conditions at the surface. In the

METAR, MESONET, and PHONE experiments the

1-h dewpoint forecast RMSE was markedly reduced,

relative to the CNTRL, throughout western Washington,

where most assimilated observations were located. A

slight increase in the u-wind 1-h forecast RMSE, relative

to CNTRL, was observed across western Washington

in all DA experiments. Since pressure and wind were

poorly correlated in this ensemble, wind analysis

increments were prone to spuriousness. This was par-

ticularly true in western Washington, where most ob-

servations were assimilated, and the analysis increments

were largest.

e. Precipitation skill

During case I, the surface low passage was associated

with both frontal and postfrontal precipitation. To

evaluate the impacts of SPO assimilation on pre-

cipitation forecasts, fractions skill scores (FSSs) were

computed for 1-h ensemble precipitation forecasts

for $1mm (see the appendix for details). Gridded ob-

servations from NCEP Stage IV 1-h precipitation ac-

cumulation analyses were used to compute the FSS at a

variety of spatial scales (Fig. 11a). On average, the FSS

remained below the ‘‘useful’’ skill threshold of 0.5 sug-

gested by Roberts and Lean (2008). Nevertheless, as-

similation of corrected SPOs and, to a lesser degree,

uncorrected SPOs improved the time-averaged FSS

relative to CNTRL (Fig. 11b). There were several times

when the FSS of the 1-h precipitation forecasts in the

PHONE and PHONE_NOQC exceeded the useful skill

threshold when CNTRL did not (Fig. 11c). A notable

example of this is at 1600 UTC 16 November when the

FSS in the PHONE experiment peaked during a post-

frontal period characterized by a decline in FSS in

CNTRL. This peak in the time series of FSS for the

PHONE experiment was observed for all neighbor-

hoods (not shown).

Figure 12 compares the fractional coverage of

gridded precipitation from the Stage IV precipitation

analyses and the fractional coverage of the ensemble

members that met/exceeded the forecast precipita-

tion threshold of 1mm within a 68-km neighborhood

at 1600 UTC 16 November. Figure 12 reveals that

CNTRL failed to capture postfrontal precipitation

while the PHONE_NOQC experiment overforecast

precipitation. This is not surprising as the assimilation

of uncorrected SPOs introduced a systematic low

pressure bias that promoted precipitation. In contrast,

the assimilation of corrected SPOs in the PHONE

experiment resulted in a more skillful mesoscale 1-h

precipitation forecast. In the PHONE experiment,

SPO assimilation reduced the pressure just offshore of

the Oregon coast. This reduction in pressure, relative

to CNTRL, encouraged the development of shallow

convection along the Oregon coast that produced a

more realistic distribution of precipitation in the

PHONE experiment.

f. Free forecasts

To examine the impact of SPOs on forecasts at longer

lead times, 11 free-forecast runs were performed during

case I. The 0–6-h free forecasts were initialized with

analyses from the cycled PHONE, PHONE_NOQC,

and CNTRL ensemble every 6 h from 1200 UTC

14 November to 0000 UTC 17 November 2016. The

RMSE of ensemble mean forecasts from all 11 runs was

computed for mean sea level pressure, 2-m temperature,

2-m dewpoint, and 10-m wind speed as a function of

forecast lead time (Fig. 13). The assimilation of corrected

SPOs improved the 2-m temperature and 2-m dewpoint

RMSEs at forecast lead times up to 6 h, while MSLP

forecasts were improved at 3–5-h lead times. When un-

corrected SPOs were assimilated, MSLP forecasts were

degraded relative to CNTRL. The assimilation of un-

corrected SPOs degraded the 2-m dewpoint forecasts at

short lead times and reduced the 2-m temperature

RMSE at all forecast lead times. In both the PHONE

and PHONE_NOQC free-forecast experiments, signif-

icant improvements to 10-m wind speed forecasts were

not observed.

6. Case II: Data assimilation and forecast results

The second case represents a very different synoptic/

mesoscale evolution from case I, with an intense, com-

pact midlatitude cyclone moving northward just off-

shore of the Pacific coast, with substantial errors in track

and intensity in the operational forecasts.

a. Cycling experiments

Figure 14a displays the domain-average altimeter bias

and RMSE for cycling experiments assimilating corrected
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(PHONE) and uncorrected (PHONE_NOQC) SPOs.

Period-averaged differences in RMSE between CNTRL

and the two DA experiments are displayed in the right

panel. For the period average, assimilating uncorrected

(corrected) SPOs degraded (improved) the 1-h forecasts

of altimeter setting. The time plot of altimeter RMSE

reveals that between 0000 and 0600 UTC 16 October

the 1-h forecast altimeter RMSE was substantially

FIG. 11. (a) FSSs for 0–1-h ensemble precipitation forecasts from the CNTRL, PHONE, and PHONE_NOQC

cycling experiments. Here, the FSS is determined by the fraction of ensemble members that forecast $ 1mm of

precipitation at each grid point or within a radius of influence r of that grid point. (b) FSSs for the PHONE and

PHONE_NOQC experiments relative to FSSs from CNTRL. Error bars represent bootstrapped 95% confidence

intervals for the difference between the FSSs of each experiment and CNTRL. (c) Time plot of FSS, at a spatial

scale of 68 km, for the CNTRL, PHONE, and PHONE_NOQC cycling experiments.

FIG. 12. (top) Stage IV gridded precipitation analysis and 0–1-h accumulated precipitation forecasts from the PHONE,

PHONE_NOQC, andCNTRLexperiments, valid at 1600UTC 16Nov 2016. (bottom) Fractional coverage fields for precipitation analysis

and 1-h forecasts. For the precipitation analysis the fractional coverage represents the fraction of analysis grids within 68 kmof a grid point

thatmeet the$1mmprecipitation threshold. For the 0–1-h ensemble precipitation forecasts, fractional coverage represents the fraction of

ensemble members that exceed the precipitation threshold within 68 km of a grid point.
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reduced, relative to CNTRL, in both the PHONE and

PHONE_NOQC experiments. During this period, the

surface low approached and made landfall on Vancouver

Island. Uncorrected SPO errors were less than those in

CNTRL. As in case I, uncorrected SPOs contributed to a

low bias in 1-h altimeter forecasts. Domain-averaged 1-h

altimeter forecasts were low biased in both the CNTRL

andPHONE_NOQCexperiments during the periodwhen

the low made landfall. Assimilation of corrected SPOs

slightly overcorrected the domain-average low pressure

bias during this period.

Figure 14b displays the domain-average 10-m wind

speed bias and RMSE for the CNTRL, PHONE, and

PHONE_NOQC cycling experiments. In this case, wind

forecast errors were dominated by errors in the track

of the surface low. In CNTRL, 10-m wind speeds

were overforecast during the time when the low made

landfall. This positive bias was mostly corrected in the

PHONE_NOQC and PHONE experiments. In the pe-

riod average, assimilating SPOs provided no added

benefit to domain-averaged wind forecasts.

In this case, errors in the forecast track contributed to

poor wind forecasts. Figures 15a and 15b display the

forecast intensity and track of the surface low in analyses

from the CNTRL, PHONE, and PHONE_NOQC cy-

cling experiments. The analyzed intensity and track

from the NOAA HRRR system is also plotted as an

estimate of truth. Later in the period, when the surface

low entered the MADIS maritime (buoy) and METAR

observing networks, the minimum observed MSLP was

plotted. Since the surface low did not pass directly over

observing sites, this estimate can be considered a lower

limit on the storm intensity.

Early in the period, prior to 2200 UTC, SPO assimi-

lation had little impact on the analyzed track and in-

tensity of the surface low as the surface low remained far

FIG. 13. RMSE as a function of forecast hour for 0–6-h free forecasts of MSLP, 2-m temperature, 2-m dewpoint,

and 10-m wind speed. These plots were generated from 11 free forecasts initialized every 6 h starting at 1200 UTC

14 Nov and ending at 0000UTC 17Nov 2016. At each forecast hour a domain-averagedRMSEwas computed from

all 11 runs. The error bars in each plot depict bootstrapped 95% confidence intervals for the RMSE difference

between each free forecast initialized from the PHONE and PHONE_NOQC cycling experiments and free

forecasts initialized from CNTRL.
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offshore. At 2200 UTC, the analyzed forecast track in

the PHONE_NOQC experiment shifted to the north-

west of the CNTRL track, in better agreement with the

HRRR analysis. A similar northwestward shift in the

analyzed surface low position was observed an hour later

(2300 UTC) in the PHONE experiment. At this time the

magnitude of the analysis increments near the surface low

increased substantially (not shown), since prior to this

time the distance between the surface low and Seattle,

where the majority of the SPOs were located, was less

than the effective localization radius for SPOs.

In the PHONE_NOQC experiment the northwest-

ward shift in the forecast track was observed an hour

earlier because more SPOs were assimilated in this

experiment than in the PHONE experiment. In this

special case, model errors exceeded the average mag-

nitude of the uncorrected SPO error. For this reason, the

quality of observations was of less importance than the

quantity, especially along the sparsely observed coast-

line. The cumulative impact of assimilating coastal SPOs

at locations unobserved in the PHONE experiment facili-

tated an earlier shift in the storm track in PHONE_NOQC

experiments by extending the analysis increments far-

ther offshore than in the PHONE experiment. While

the timing of the track shift differed in each SPO ex-

periment, the location of landfall was the same in both

experiments and in better agreement with the HRRR

analysis than CNTRL. Likewise, surface low intensity

analyses in the PHONE and PHONE_NOQC experi-

ments were closer to the HRRR analysis and minimum

observed MSLP than CNTRL. While not shown in

Fig. 15, similar improvements to analyses were retained

in 1-h cycled forecasts of the surface low intensity and

position.

b. Free forecasts

To evaluate how SPO assimilation impacted forecasts

of the surface low track and intensity at longer lead

times, free forecasts were initialized at 2300 UTC

15 October from the cycled CNTRL, PHONE_NOQC,

FIG. 14. RMSE and bias of (a) altimeter setting and (b) 10-mwind speed during case II cycling experiments. (left)

Time series of RMSE and bias for the CNTRL (black), PHONE (blue), and PHONE_NOQC (pink) experiments.

(right) Boxplots display the distribution of RMSE differences between the 1-h forecast (prior) RMSE and 1-h

forecasts from each experiment.
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and PHONE ensembles. This initialization time was

chosen because at this time the low positions in both

SPO experiments had deviated from the position of the

low in CNTRL. In case I, free-forecast experiments

showed MSLP forecast improvements at lead times up

to 5 h. For this reason, 0–5 h free forecasts were evalu-

ated in case II.

Figures 16a and 16b display 0–5-h forecasts, initialized

at 2300 UTC, of the surface low intensity and position for

the HRRR, CNTRL, PHONE_NOQC, and PHONE

experiments. In the PHONE and PHONE_NOQC ex-

periments, the surface low intensity was closer to the

HRRR analysis and minimum observed MSLP than in

CNTRL. In both SPO experiments, initial improve-

ments to the surface low intensity were retained at all

forecast lead times. Similarly, improvements in the track

of the surface low were observed at all forecast lead

times in the PHONE and PHONE_NOQC experiments

(Fig. 16b). At forecast lead times of 2–5 h, the surface

low track in the PHONE_NOQC experiment over-

lapped with the surface HRRR analyzed track. In the

PHONE experiment, the surface low tracked parallel to

the HRRR analysis as the low approached land, making

landfall approximately 25km east of the analyzed HRRR

track. In CNTRL the surface low tracked approximately

100 km east of the HRRR-analyzed track, making

landfall on the Olympic Peninsula before crossing the

Strait of Juan de Fuca.

c. Wind forecast analysis

In case II, the intensity and position of the surface low

impacted the distribution and strength of near-surface

winds along the western Washington coast and the

interior. To evaluate the performance of ensemble near-

surface wind andwind gust forecasts, the Brier skill score

(BSS) was employed (see the appendix for details). Using

the CNTRL ensemble as a reference forecast, the BSSwas

calculated for SPO cycling and free-forecast experiments.

MADIS maritime and METAR near-surface wind ob-

servations were used for verification. Time plots of BSS

for probabilistic forecasts of 10-m wind speed exceeding

10m s21 and surface wind gusts exceeding gale force

(17.2m s21) are shown in Fig. 17. The assimilation of

uncorrected/corrected SPOs resulted in more skillful

10-m wind and surface gust forecasts from 0100 to

0400UTC 16October 2016. By this time, the surface low

intensity had decreased, and the low position had shifted

northwest relative to CNTRL. Free forecasts initialized

with analyses from the PHONE and PHONE_NOQC

cycling experiments produced more skillful 10-m wind

speed and surface gust forecasts than CNTRL at 2–5-h

forecast lead times. Improvements in near-surface wind

forecast skill were greatest in the PHONE_NOQC

free-forecast experiment, as in this experiment the sur-

face low track was farthest from the CNTRL track and

closest to the analyzed HRRR track. In both SPO

forecast experiments, improvements to the initial sur-

face low intensity and position were retained at forecast

lead times up to 5 h, facilitating more skillful wind

forecasts at equivalent forecast lead times.

7. Conclusions

This paper examines the impact of smartphone pres-

sure observations (SPOs) for two events: the first in-

volving the passage of a trough and associated cold front

FIG. 15. (a) Surface low intensity and (b) track ensemble mean analyses in the HRRR, CNTRL, and cycling experiments PHONE and

PHONE_NOQC. TheminimumobservedMSLP is plotted at the end of the period when the surface lowwas within theMADISmaritime

(buoy) and METAR observing networks.
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and the second associated with the landfall of an intense

low pressure center. For each case, there is an evaluation

of the impacts of advanced quality control strategies

and machine learning for the bias correction of smart-

phone pressure observations. In addition, the impact of

improved quality control/bias correction of smartphone

pressure observations on forecast skill is examined,

building on previous work (McNicholas andMass 2018).

In case I, a surface low/trough traversed thePuget Sound

region, where SPO density was greatest. During this

FIG. 16. (a) Surface low intensity and (b) track forecasts for ensemble mean free forecasts initialized at 2300 UTC 15 Oct 2016. HRRR

intensity and track analyses are displayed for reference. TheminimumobservedMSLP is plotted at the end of the period when the surface

low was within the MADIS maritime (buoy) and METAR observing networks. Two-tailed t tests were applied to test the difference

between the ensemble mean surface low intensity in the PHONE_NOQC and PHONE experiments and CNTRL. In the intensity plot,

bold markers indicate analyses/forecasts from these experiments whose p value was ,0.05. The forecast position of the surface low is

plotted in (b).

FIG. 17. BSS for surface wind gusts exceeding gale force (17.2m s21) and 10-m wind speed exceeding (10m s21). (top) BSSs for cycling

experiments PHONE and PHONE_NOQC. (bottom) BSSs for 0–5-h free forecasts initialized from the PHONE and PHONE_NOQC

cycled ensembles. BSSs were computed using the CNTRL ensemble as a reference forecast. Positive BSSs indicate improvements in skill,

relative to CNTRL, and vice versa.
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event, corrected SPOs consistently reduced the analysis

error of the altimeter setting, 2-m temperature, and 2-m

dewpoint. Reductions in 1-h forecast errors for these

surface variables were achieved when corrected SPOs

were assimilated in the cycling mode. Such reductions in

RMSE were consistent in time and space. Compared to

experiments that assimilated pressures from traditional

mesonets, the assimilation of corrected SPOs resulted

in nearly equivalent reductions in domain-averaged al-

timeter and temperature forecast/analysis errors. Like-

wise, the spatial distribution of forecast improvements

was markedly similar in experiments assimilating cor-

rected SPOs and pressures from traditional mesonets

and METARs.

The assimilation of uncorrected SPOs did not improve

the altimeter analyses and 1-h forecasts in case I; how-

ever, uncorrected SPOs were able to improve analysis/

forecasts of 2-m temperature. This unintuitive result was

the consequence of a cancellation of biases, wherein

negatively biased smartphone pressures induced posi-

tive temperature increments that reversed a systematic

negative temperature bias in the control experiment. In

no-cycling/cycling DA experiments, SPOs did not im-

prove wind analyses/forecasts, a result reflecting the lack

of correlation between ensemble estimates of pressure

and wind. The magnitude of the analysis and forecast

error reductions, achieved by assimilating corrected

SPOs, was directly proportional to the number of ob-

servations assimilated and the magnitude of the corre-

lation of surface pressure with the surface variable

evaluated.

In case I, both corrected and, to a lesser degree, un-

corrected SPOs improved 1-h forecast precipitation skill

relative to the control simulation without smartphone

observations. Improvements in the fractions skill score

were most notable during the postfrontal period when the

assimilation of corrected SPOs improved mesoscale fore-

casts of postfrontal convective precipitation along the

Oregon coast. Free-forecast experiments showed that as-

similating corrected SPOs resulted in a significant reduction

in forecast RMSEs for altimeter setting, 2-m temperature,

and 2-m dewpoint at forecast lead times of 3–6h.

Case II considered a storm poorly forecast by opera-

tional systems. The assimilation of both corrected and

uncorrected SPOs significantly improved altimeter and

10-m wind forecasts during the period of storm landfall.

In this case, SPO quality had little impact on forecast

performance since errors in uncorrected SPOs were

dwarfed by the magnitude of the pressure errors in the

control ensemble. In cycled SPOassimilation experiments,

errors in the analyzed track and intensity of the windstorm

were markedly reduced as the storm approached land-

fall. Free-forecast experiments demonstrated that such

reductions in model analysis errors were associated with

improvements in the forecast track and intensity of the

windstorm at short lead times. In both cycling and free-

forecast SPO experiments, improvements in the forecast

storm track resulted in commensurate improvements to

probabilistic near-surface wind forecasts.

In the region used in these experiments (the Pacific

Northwest), there are likely over a million smartphones

capable of retrieving pressure. This would imply that in

the experiments discussed above less than 0.1% of po-

tential SPOs were assimilated. In this study, sensitivity

experiments revealed that domain-averaged analysis

error, relative to the control, decreased monotonically

as the number of assimilated smartphone observations

was increased. Since just over a thousand hourly SPOs

performed similarly to existing mesoscale pressure net-

works in constraining forecasts of pressure, tempera-

ture, and dewpoint, it is plausible that greater reductions

in analysis/forecast error are possible if a considerably

denser network was available. MM2018 showed that

such a network is feasible by demonstrating that

smartphone pressures can be efficiently collected and

bias corrected at subhourly intervals. This study con-

firms the methodology of MM2018 and suggests that

crowdsourced smartphone pressures can enhance

operational numerical weather prediction.
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APPENDIX

Verification Methods

In this study, ensemble forecasts were evaluated us-

ing the National Center for Atmospheric Research

(NCAR)Model Evaluation Toolkit (MET; Fowler et al.

2018). MET was used to calculate several verification

metrics for ensemble mean forecasts. The first metric,

mean error (bias), was computed as the domain-average

difference between the ensemble mean forecast fi and

verifying observation oi at each observation location:

bias5
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The second metric, RMSE, was computed as an average

over the model domain:
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2 o

i
)2

s
. (A2)

In all DA experiments, RMSE and bias was evaluated

with high quality METAR observations.

Ensemble probabilistic forecast skill was evaluated using

theBrier score (BS;Brier 1950). TheBS is analogous to the

mean squared error for probabilistic forecasts:

BS5
1

n
�
n

t50

(F
t
2o

t
)2 . (A3)

In the Brier score, Ft represents the fraction of ensemble

members that forecast an event to occur at time t, while

ot defines whether an event was observed to occur at

time t. In this study, the BS is used to calculate the Brier

skill score as

BSS5 12
BS

FCST

BS
CNTRL

, (A4)

and the CNTRL ensemble is used as the reference

forecast. When the BSS is negative (positive), the en-

semble FCST is less (more) skillful than CNTRL.

To evaluate the performance of ensemble forecasts

across spatial scales, the fractions Brier score (FBS;

Roberts 2005) is used. The FBS is defined as

FBS5
1

N
�
N

i51

(hP
f
i
i
2 hP

o
i
i
)2 , (A5)

whereN is the number of neighborhoods.Neighborhoods

N are defined using a radius of influence r. At each grid

point i, a neighborhood is defined as a square grid of all

grid points within r kilometers of i. In Eq. (A5), hPf ii
represents the fraction of grid points (i.e., fractional

coverage) of a binary metric (e.g., precipitation

accumulation $ 1mm) within a forecast neighborhood,

at each grid point i. Likewise, hPoii is the fractional

coverage of a binary metric within an observed neigh-

borhood, at each grid point i. In this study, the FBS is

used within the context of the fractions skill score (FSS;

Roberts and Lean 2008). The FSS is calculated as

FSS5 12
FBS

�
N

i51

hP
f
i2
i
1 �

N

i51

hP
o
i2
i

, (A6)

where the denominator represents the worst possible

FBS (i.e., observed and forecast events have no spatial

overlap). For the purposes of this study, the FSS is

evaluated using the neighborhood ensemble probability

approach outlined in Schwartz et al. (2010). In this

approach, hPf ii represents the fraction of ensemble

members that exceed a given threshold within neigh-

borhood N, at each grid point i.
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